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要旨

マテリアルズインフォマティクス（MI）は，多様な材
料データの取得，管理，分析，普及により，新素材の開
発，生産，導入にかかる時間，リスク，コストの削減を
可能とする。たとえば，新しいポリマー複合材料発見の
時間とコストをMIを使って削減することで，材料開発イ
ノベーションインフラを大幅に改善でき，新たに発見さ
れたポリマー複合材料を様々な用途に迅速に展開できる。
材料開発イノベーションインフラの改善による経済的利
益の推定は，米国だけでも1,000億ドル／年を超えてい
る。MIを有効に活用するには，データマイニングによる
文献データの収集に加えて，多量の有効なデータをいか
にスピーディに低コストで生成させることも重要である。

今回，我々は産業的に重要なポリマー複合材料の開発
において必要なMIのインフラを開発したので，報告す
る。インフラは材料種を文献からのデータマイニングに
よる選択，技術的に非常に困難なソリューションプロセ
スで組成比を変化させたサンプルを迅速に作成するハイ
スループット高温製膜装置，およびハイスループット物
性測定装置から成り立つ。本インフラは，様々な複合材
料の開発に適用でき，MIによる新高機能性複合材料の迅
速な開発に貢献すると期待される。

Abstract

Materials Informatics (MI) enables the reduction of time, 

risk, and cost for development, production, and deployment 

of a new material by acquisition, management, analysis, 

and dissemination of diverse materials data. For example, MI 

will significantly improve materials innovation infrastructure 

by reducing the time and cost of new polymer composite 

discovery resulting in a rapid deployment of the newly dis-

covered polymer composite to various applications. The 

estimated overall economic benefit of improved materials 

innovation infrastructure is over hundred billion $/year in 

USA alone. In order to make effective use of MI, It is impor-

tant to generate a large amount of effective data quickly at a 

low cost in addition to the collection and analysis of pub-

lished literature data by data mining.

We report development of the infrastructure consisted of 

data mining for selection of industrially important polymer 

composite materials and process, a high-throughput (HT)

and high-temperature gradient composition film coater 

using technologically very challenging solution process for 

quickly creating the samples with various material species 

and composition ratios critical for composite materials dis-

covery, and high-throughput characterization tool to quickly 

measure physical properties. This infrastructure can be 

applied to the development of various composite materials 

and is expected to contribute to the rapid development of 

new high-functional composite materials.

　＊Konica Minolta Laboratory USA, Konica Minolta Business Solutions U.S.A., Inc.
＊＊Chemical & Biomolecular Engineering, Georgia Institute of Technology

Accelerated Materials Discovery by Materials Informatics:
Informatics-Enabled Strong Polymer Composite Discovery

Jun AMANO , Karsten BRUENING , Michael MCBRIDE , Nils PERSSON , Ezgi DOGAN-GUNER , Aaron LIU , 

Zihao QU , Guoyan ZHANG , Elsa REICHMANIS , Carson MEREDITH , and Martha GROVER



109KONICA MINOLTA TECHNOLOGY REPORT VOL. 17 (2020)

1   Introduction

Traditionally, the discovery of new materials depends 
on the domain knowledge of experienced materials 
scientists and relies on a process with many trials and 
errors. It usually takes a decade to come up with new 
functional materials. In order to accelerate this highly 
expensive and time-consuming process of materials 
discovery, data-driven materials informatics approaches 
have become more popular among the materials sci-
ence community. According to Wikipedia1), “Materials 
informatics is a field of study that applies the principles 
of informatics to materials science and engineering to 
better understand the use, selection, development, 
and discovery of materials.” The estimated overall 
economic benefit of improved materials innovation 
infrastructure is over hundred billion $/year in USA 
alone2).

We have conducted a collaborative research proj-
ect between Konica Minolta and Georgia Institute of 
Technology (GIT). The goal was to develop the infra-
structure consisted of selection of industrially impor-
tant polymer composite materials and process by 
data mining of the published papers, a high-through-
put and high-temperature gradient composition film 
coater using technologically very challenging solu-
tion process for quickly creating the samples with 
various material species and composition ratios criti-
cal for composite materials discovery and high-
throughput characterization tool to quickly measure 
physical properties. 

In this article, the data-driven materials informatics 
process, e.g., data mining, high-throughput experi-
mentation for data creation, and data analytics using 
machine learning (ML) is described. The main pro-
cess workflow is shown in Fig. 1. 

2   Data mining

One of the key processes in materials informatics is 
a careful data mining through published literature 
and patents. If a large volume of literature is avail-
able, it is possible to discover new materials solely by 
using an advanced text mining algorithm, such as 
Natural Language Processing (NLP), and careful anal-
ysis thereof, without experimentations3). For the case 
of limited data availability, one can use several ML 
algorithms, such as clustering and regression analysis 
to identify target materials with the desired proper-
ties4). For polymer composites, the available litera-
ture describing mechanical properties are often only 
on the order of hundreds. In those cases, it is better 
to use selected databases of high-performance mate-
rials for a new composite discovery5). 

After completion of the data mining process to 
define a promising polymer matrix and additives for 
the target mechanical properties, high-throughput 
experimentation needs to be conducted to validate 
the findings of the data mining and produce a suffi-
cient database used for further machine learning-
guided optimization.

3   High-throughput sample creation

In order to accelerate the fabrication of polymer 
composite samples and to probe multiple composi-
tions in one sample, we developed a tool that produces 
polymer composite films with a gradient in composi-
tion using solution processing. Fig. 2 shows a sche-
matic of such system; the two-channel composition 
gradient blade coater for polymer composite films 
with the mixing system and moving coating stage. In 
general, many technologically interesting polymers 
produce several technical challenges in solution pro-
cessing due to low ambient solvent interactions and 
high viscosities. Accordingly, the automated flow, 
passive mixing, and blade coating systems must be 
capable of high temperature operation for solution-
casting of polymer composite films. Fig. 3 shows a pic-
ture of a custom-designed passive high-temperature 
microfluidic chaotic mixer replacing a conventional 
drum and agitator mixer. The passive mixer consists 
of chevron-patterned mixing path suitable for flow of 
high viscosity solutions and filler particles. This sys-
tem is capable of fabrication of gradient films with 
spatial variations in composition. Fig. 4 shows an exam-
ple of the spatially gradient composite film. The left 
side of the film consisted of 100% polymer, and the 
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Fig. 1   Overall process workflow for discovery of high- strength polymer 
composite.



110 KONICA MINOLTA TECHNOLOGY REPORT VOL. 17 (2020)

right side of the film consisted of the highest additive 
concentration. The dye was added to the additive in 
order to show the gradient color change correspond-
ing very smooth compositional gradient.

characterization is performed to rapidly map the 
mechanical properties in a large composition space. 
Fig. 5 illustrates the high-throughput mechanical 
characterization (HTMECH) tool to measure elastic 
(Young’s) modulus and ultimate tensile strength of 
100 points per sample with various compositions6). In 
the HTMECH tool, a pin attached to a force sensor 
pushes the composite films into small openings in the 
sample holder to measure elastic modulus and ulti-
mate tensile strength, resulting in 100 data points per 
sample.
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Fig. 2   A schematic diagram of two-channel composition gradient blade 
coater for polymer composite films with the mixing system and 
moving coating stage.

Fig. 3   Passive high-temperature micro fluidic chaotic mixer with a chev-
ron patterned mixing path.

Fig. 4   Picture of a polymer composite film with very smooth composi-
tional gradient.

4   High-throughput data creation

After fabricating gradient composition polymer 
composite films using the high temperature blade 
coater system, high-throughput mechanical property 
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Fig. 5   High-throughput mechanical characterization (HTMECH) tool to 
measure elastic (Young’s) modulus and ultimate tensile strength 
of 100 points/sample.

5   Machine learning

All measured data is now ready to be compiled and 
analyzed computationally to obtain materials-proper-
ties relationships and input this information back to 
materials preparation to start another experimenta-
tion to explore the optimum design space. At the ini-
tial stage of the Materials Informatics process, it is 
most helpful to use a traditional physical model-based 
machine learning process using manual feature 
extraction by an experienced materials scientist as 
indicated in Table 1. After a sufficiently larger labeled 
dataset has been obtained by completion of several 
experimental loops, deep learning with much fewer 
human inputs can be utilized. To obtain a reasonable 
accuracy in a new materials discovery process by 
deep learning, at least a few thousand labeled datas-
ets may be required. 

Some of the recent results of this project will be 
presented at the 2019 Fall Materials Research Society 
meeting in Boston, MA7).
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6   Conclusion

This article presents the workflow and tool sets to 
obtain materials-process-property relationships and 
to rapidly optimize polymer composites using a data-
driven materials informatics approach with minimum 
time and resources requirements. This approach is 
applicable for many other materials systems.

Combining this approach with highly autonomous 
robotic experimental tools with deep learning/trans-
fer learning processes, automated materials discovery 
and manufacturing system with a minimum human 
engagement may be possible in the near future. 
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Table 1  Machine Learning vs. Deep Learning.

Parameters
Training dataset
Feature extraction
Classifier
Training time

Machine Learning
Small

Manual
Many
Short

Deep Learning
Large

Automatic
Few
Long




